
Efficient Search and Elimination of Harmful Objects
for the Optimization of QC-SC-LDPC Codes

Massimo Battaglioni∗, Franco Chiaraluce∗, Marco Baldi∗, and David G. M. Mitchell†
∗Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy

Email: {m.battaglioni, f.chiaraluce, m.baldi}@staff.univpm.it
†Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88011

Email: dgmm@nmsu.edu

Abstract—The error correction performance of low-density
parity-check codes under iterative message-passing decoding is
degraded by the presence of certain harmful objects existing in
their Tanner graph representation. Depending on the context,
such harmful objects are known as stopping sets, trapping sets,
absorbing sets, or pseudocodewords. In this paper, we propose
a general procedure, based on edge spreading, that enables
the design of good quasi-cyclic spatially coupled low-density
parity-check codes. These codes are derived from quasi-cyclic
low-density parity-check (QC-LDPC) block codes and possess a
significantly reduced multiplicity of harmful objects with respect
to the original QC-LDPC block codes. The proposed procedure
relies on a novel algorithm that greedily spans the search space
of potential candidates to reduce the multiplicity of the target
harmful objects. The effectiveness of the method is validated via
examples and numerical computer simulations.

Index Terms—Cycles, iterative decoding, LDPC convolutional
codes, quasi-cyclic codes, spatially coupled codes, trapping sets.

I. INTRODUCTION

Low-density parity-check (LDPC) block codes were first
introduced by Gallager [1] and have attracted significant inter-
est over time due to their capacity-approaching performance.
The convolutional counterparts of LDPC block codes, called
LDPC convolutional codes or spatially coupled LDPC codes
(SC-LDPCCs), were first proposed in [2]. Further studies
have shown that SC-LDPCCs are able to achieve the capacity
of memoryless binary symmetric channels under iterative
decoding based on belief propagation [3], [4].

It is well known that iterative algorithms used for decoding
LDPC codes may get trapped in certain error patterns that
arise due to structural imperfections in the code’s Tanner
graph. These objects may cause a severe degradation of the
error correction performance, especially in the high signal-to-
noise ratio region (i.e., the error-floor region). These harmful
objects depend on the considered channel and the type of
decoding algorithm in use. The concept of stopping set was
introduced in [5], where the failures of iterative algorithms
over the binary erasure channel are characterized. More com-
plex channels, like the additive white Gaussian noise (AWGN)
channel, require the definition of more subtle harmful objects.
An early work in this direction is [6], where trapping sets
are defined. A particularly harmful subclass of trapping sets,

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS-1710920.

called absorbing sets, were shown to be stable under bit-
flipping iterative decoders [7]. Many harmful trapping sets
originate from cycles in the code’s Tanner graph [8], [9].

SC-LDPCCs can be designed starting from LDPC block
codes via an edge spreading procedure [10]. Clearly, the
harmful objects of the SC-LDPCCs arise from related objects
in the underlying LDPC block codes, and their multiplicity
depends on the adopted edge spreading method. Some ef-
forts have been devoted to the graph optimization from an
absorbing set standpoint of array-based (AB) SC-LDPCCs
[11]–[17]. These approaches have been restricted to certain
code structures and harmful objects to enable a feasible search.
Furthermore, most of these previous works have the limitation
of excluding a priori many possible solutions of the problem in
order to reduce the search space. Moreover, as shown in [13],
[16], the multiplicity of harmful objects can be significantly
reduced by increasing the memory of SC-LDPCCs. However,
the computational complexity of previous approaches limits
their viability to small memories. To the best of the authors’
knowledge, a general scheme enabling the construction of
optimized quasi-cyclic SC-LDPCCs (QC-SC-LDPCCs) (with
respect to minimization of harmful objects) from QC-LDPC
block codes with large memories is missing in the literature.

The objective of this paper is to propose an algorithm that,
given any QC-LDPC block code, exploits a smart strategy
to construct an optimized QC-SC-LDPCC by performing a
greedy search over all candidates. This search attempts to
minimize the multiplicity of the most harmful object (or
combinations of objects) for the given channel and decoding
algorithm. The effectiveness of the proposed procedure is
demonstrated for several exemplary code constructions with
variable code memories via enumeration of the target harmful
objects and computer simulations.

The paper is organized as follows. In Section II, we
introduce the notation used throughout the paper and some
basic concepts of QC-LDPC block codes and SC-LDPCCs
derived from them. In Section III, we focus on edge spreading
matrices and the corresponding cycle properties. In Section
IV, we describe the algorithm we propose. In Section V, we
provide some code examples and assess their error rate per-
formance. Finally, in Section VI, we draw some conclusions.



II. DEFINITIONS AND NOTATION

In this section we first introduce the notation for QC-LDPC
codes and describe the edge spreading procedure to obtain
QC-SC-LDPCCs from QC-LDPC block codes.

A. QC-LDPC codes

Let us consider a QC-LDPC block code, in which the
parity-check matrix H is an m × n array of N × N cir-
culant permutation matrices (CPMs) or all-zero matrices.
We denote these matrices as I(pi,j), 0 ≤ i ≤ m − 1,
0 ≤ j ≤ n − 1, while N is the lifting degree of the code
and pi,j ∈ {−∞, 0, 1, . . . , N − 1}. When 0 ≤ pi,j ≤ N − 1,
I(pi,j) is obtained from the identity matrix through a cyclic
shift of its rows to the left by pi,j positions. Conventionally,
we denote the all zero matrix by I(−∞). The code length
is L = nN . The exponent matrix of the code is the m × n
matrix P having the values pi,j as its entries.
We associate a Tanner graph G(H) to any H in the usual

way. The set of L variable nodes is denoted as V and the
set of mN check nodes is denoted as P . The set of edges is
denoted as E. Thus, we can express G(H) as G(V ∪ P , E).
Let us consider the subgraph induced by a subset D of V . We
define O(D) as the set of neighboring check nodes with odd
degree in such a subgraph. The girth of G(H), noted by g, is
the length of the shortest cycle in the graph (or subgraph).
An (a, b) absorbing set (AS) is a subset D of V of size

a > 0, with O(D) of size b ≥ 0 and with the property that
each variable node in D has strictly fewer neighbors in O(D)
than in P \ O(D). We say that an (a, b) AS D is an (a, b)
fully AS (FAS) if, in addition, all nodes in V \D have strictly
more neighbors in P \ O(D) than in O(D).
For a QC-LDPC code, a necessary and sufficient condition

for the existence of a cycle of length 2k in G(H) is [18]
k−1∑
i=0

(
pmi,ni

− pmi,ni+1

)
= 0 mod N, (1)

where nk = n0, mi ̸= mi+1, ni ̸= ni+1. In the rest of the
paper, with a slight abuse of notation, we refer to cycles in
G(H) and cycles in H interchangeably.

B. QC-SC-LDPCCs based on QC-LDPC codes

The edge spreading procedure [13] is defined by an m×n
(ms + 1)-ary spreading matrix B, where ms represents the
memory of the resulting SC-LDPCC. The spreading matrix B
can also be represented as an integer spreading vector b of
length n, where the ith element, bi, is obtained by replacing
the ith column of B, which is an (ms + 1)-ary vector of
length m, to its decimal value. Conversely, B can be obtained
from b by replacing each decimal entry with the associated
(ms + 1)-ary column vector of length m. Given any column
of B, we assume, without loss of generality, that the most
significant symbols are those with the smallest row indices. A
straightforward example of conversion fromB to b is reported
in Example 1.
A convolutional exponent matrix derived from B has the

following form

P[0,∞] =



P0

P1 P0

... P1
. . .

Pms

...
. . .

Pms

. . .


,

where the (i, j)th entry of the m × n matrix Pk, k ∈
[0, 1, . . . ,ms] is

P
(i,j)
k =

{
pi,j if k = Bi,j ,

−∞ if k ̸= Bi,j ,

and Bi,j is the (i, j)th entry of B. Let us remark that −∞
represents void entries in the convolutional exponent matrix
and corresponds to the N ×N all-zero matrix in the related
binary parity-check matrix. Notice that the entries of P[0,∞]

which are off the main diagonal are −∞ and have been
omitted for the sake of readibility. The parity-check matrix
of the QC-SC-LDPCC is then obtained as

H[0,∞] =



H0

H1 H0

... H1
. . .

Hms

...
. . .

Hms

. . .


, (2)

where the appropriate N×N CPMs are substituted for the en-
tries of P[0,∞] which have values in the set {0, 1, . . . , N−1},
and the N ×N all-zero matrix is substituted for the entries of
P[0,∞] which are −∞. In the subsequent sections, we will use
also H[0,L] which represents a terminated version of H[0,∞],
obtained by considering the first (L+ms)Nm rows and LNn
columns of the semi-infinite parity-check matrix. Moreover,
for the sake of readability, in the rest of the paper we refer to
QC-SC-LDPCCs based on QC-LDPC codes as QC-SC codes.

Example 1 Consider the (3, 5)-regular array LDPC block
code with the exponent matrix

P =

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3

 (3)

and N = 5. Consider also the spreading matrix and the
associated spreading vector, with ms = 2,

B =

0 0 0 2 1
0 1 2 1 0
1 0 0 0 1

 ,b =
[
1 3 6 21 10

]
. (4)

Then the constituent blocks of P are

P0 =

0 0 0 − −
0 − − − 4
− 2 4 1 −

 ,P1 =

− − − − 0
− 1 − 3 −
0 − − − 3

 ,



P2 =

− − − 0 −
− − 2 − −
− − − − −

 ,

where, for simplicity, −∞ has been expressed as −.

C. Exhaustive Search

According to the definition given in Section II-B, there are
(ms+1)mn possible spreading matrices. We use the following
property from [19] to reduce the size of the search space,
without loss of completeness.

Lemma 1 Let P1 and P2 be exponent matrices. If P1 can
be obtained by permuting the rows or the columns of P2, or
it can be obtained by adding or subtracting (modulo N ) the
same constant to all the elements of a row or a column of P2,
then the corresponding codes are equivalent.

It follows from Lemma 1 that the set of exponent matrices
that contain at least one zero in each column represents,
without loss of generality, the entire space of exponent ma-
trices. Similarly, it is straightforward to show that the set
of spreading matrices containing at least one zero in each
column represents, without loss of generality, the entire space
of spreading matrices. Each of the m entries of a column of
B can assume values in [0, 1, . . . ,ms] and, thus, there are
(ms + 1)m possible columns. However, we can remove the
mm

s columns which do not contain any zero. It follows that

[(ms + 1)m −mm
s ]n (5)

spreading matrices cover the whole search space. It is straight-
forward to notice from (5) that the number of candidate edge
spreading matrices becomes very large as the values of m,
n, and ms increase. For this reason, we propose, in Section
IV, a novel procedure which allows one to distinguish “good”
candidates from “bad” candidates. Such an algorithm, based
on a tree-search, does not exclude, a priori, any candidate
spreading matrix. Instead, “bad” candidates and their children
are discarded by the algorithm during the search. In other
words, the algorithm only keeps “good” candidates, under the
assumption that the children of “bad” candidates are more
likely to yield a higher multiplicity of harmful objects with
respect to the children of “good” candidates. Numerical results
provided in Section V confirm that the aforementioned as-
sumption is reasonable, since the proposed algorithm outputs
spreading matrices yielding a smaller multiplicity of harmful
objects with respect to previous approaches.

III. EDGE SPREADING MATRICES

As mentioned in Section II, trapping sets (and therefore
ASs and FASs) originate from cycles, or clusters of cycles.
In this section we prove conditions on the existence of cycles
in H[0,∞]; this allows us to derive the number of equations
that must be checked for each candidate spreading matrix in
order to verify if it is a “good” candidate or a “bad” candidate
for the proposed algorithm. The “goodness” of a candidate is

measured by the number of harmful objects of the underlying
block code it can eliminate.

We say that a block-cycle of length λ exists in the Tanner
graph corresponding to the parity-check matrix of the block
code described by P if there exists an m × n submatrix of
P, denoted as Pλ, containing λ of its non-void entries (and
−∞ elsewhere) such that (1) holds.

The block-cycle distribution (or spectrum) of H[0,L] is
denoted as DL,Λ and is a vector such that its ith entry DL,Λ

i

represents the multiplicity of block-cycles of length 2i+4 ≤ Λ
in G(H[0,L]).
We calculate the average number of block-cycles of length

λ per node Eλ as follows [11]:
1) evaluate the number of block-cycles spanning exactly i

sections, i ∈ [2, 3, . . . , ⌊λ4 ⌋ms + 1] as

Ki = Di,λ
λ−4
2

−
i−1∑
j=1

(i+ 1− j)Kj , (6)

where K1 = D1,λ
λ−4
2

;
2) compute the average as

Eλ =

∑⌊λ
4 ⌋ms+1

i=1 Ki

n
. (7)

We also define EΛ as the vector containing Eλ, ∀λ ∈
[4, 6, . . . ,Λ], as its entries. A similar procedure can be used
to compute the average number of (a, b) ASs, E(a,b). We
introduce the concept of harmful object to encompass the
cycles and ASs/fully ASs which deteriorate the performance
of the considered codes in a single notion.

Remark 1 Consider a block-cycle of length λ, described by
Pλ, existing in the Tanner graph G(H) associated to the
parity-check matrix of a block QC-LDPC code. Then, after
the edge spreading procedure based on B is applied, Pλ also
exists in G(H[0,∞]) if and only if Bλ, defined as

Bλ
i,j =

{
−∞ if Pλ

i,j = −∞,

Bi,j otherwise,

satisfies (1) over Z.

Suppose now that the code defined by an exponent matrix
P contains ν block-cycles. Given B, we can extract all the
submatrices Bλi , 0 ≤ i ≤ ν − 1, that correspond to the
block-cycles in the QC-LDPC code and check whether (1)
is satisfied or not. If it is satisfied, then the block-cycle also
exists in the QC-SC code; if it is not satisfied, then the block-
cycle does not exist in the QC-SC code. In other words,
given an exponent matrix and a spreading matrix, checking as
many equations as the number of block-cycles in the exponent
matrix will determine the number of block-cycles in P[0,∞].
We also remark that a block-cycle in an exponent matrix
corresponds to N cycles in the binary parity-check matrix.

Example 2 Consider the same code and the same spreading
matrix as in Example 1 (see (3) and (4), respectively). G(H)



contains twenty block-cycles of length λ = 6. For the sake
of brevity, we only consider three of them, along with the
corresponding entries of the spreading matrix

Pλ0 =

[
0 0 − − −
0 − 2 − −
− 2 4 − −

]
Bλ0 =

[
0 0 − − −
0 − 2 − −
− 0 0 − −

]
,

Pλ1 =

[
− 0 0 − −
0 − 2 − −
0 2 − − −

]
Bλ1 =

[
− 0 0 − −
0 − 2 − −
1 0 − − −

]
,

Pλ2 =

[
− 0 0 − −
− 1 − 3 −
− − 4 1 −

]
Bλ2 =

[
− 0 0 − −
− 1 − 1 −
− − 0 0 −

]
Notice that Pλi , i = 0, 1, 2, comply with (1), as they repre-

sent block-cycles in the array LDPC block code. Moreover, (1)
is satisfied for Bλ2 but not for Bλ0 and Bλ1 . In other words,
G(H[0,∞]) contains the block-cycles of length 6 corresponding
to Pλ2 , but not those associated to Pλ0 and Pλ1 . The same
procedure can be applied to test whether the remaining 17
block-cycles are also contained in G(H[0,∞]) or not.

IV. A GREEDY ALGORITHM TO CONSTRUCT OPTIMIZED
QC-SC CODES

In this section we describe a general algorithm, named
MInimization of HArmful Objects (MIHAO), which can be
applied to an arbitrary harmful object (or objects) of interest
to find a good QC-SC code. Given the exponent matrix of
a QC-LDPC block code, we first determine which are the
most harmful objects causing an error rate performance degra-
dation. The pseudo-code describing the proposed recursive
procedure is provided in Algorithm 1. We propose to use
a tree-based search: the root node of the tree is the all-
zero spreading matrix, which characterizes a QC-LDPC block
code, while the lth tier contains all the spreading matrices
with l non-zero entries that minimize the average number of
harmful objects per node with respect to their parent node.
If a parent node has no children nodes with better properties
than its own, it is discarded, and the algorithm backtracks. If
no specific stopping criterion is included, all candidates are
tested; the node representing the spreading matrix (or vector)
yielding the smallest average number of harmful objects per
node is the output of the algorithm. Stopping criteria can be,
for example, the maximum number of times the algorithm
backtracks or the maximum number of tiers it spans.
We provide in the following a description of the functions

used in Algorithm 1. The function edge_spread(P,B, N)
performs the edge spreading procedure as described in Sec-
tion II-B, while count_elimin_objects(P,B) determines how
many harmful objects are removed from P for a given
B. This is accomplished according to Remark 1, as shown
in Example 2. The multiplicity of eliminated objects for
each choice of Bi,j is stored in a matrix denoted as
M. Then, the candidate base matrices are those maximiz-
ing the multiplicity of removed harmful objects. Finally,
count_harmful_objects(H, λ) computes the average number

Algorithm 1
Input exponent matrix P, circulant size N , size of harmful
objects λ, all-zero spreading matrix B, memory ms

procedure MIHAO(P, N , λ, B, ms)
Bold ← B
H← edge_spread(P,B, N)
Cold ← count_harmful_objects(H, λ)
for i← 0 to m do

for j ← 0 to n do
if Bi,j = 0 then

for k ← 0 to ms do
Bi,j ← k

M
(k)
i,j ← count_elimin_objects(P,B)

Bi,j ← 0

M ← max0≤k≤ms
M

(k)
i,j

ncands ← #(M
(k)
i,j = M)

while !Stopping criterion do
if ncands > 0 then

Randomly pick (i, j, k) such that M (k)
i,j = M

Bnew ← B
B

(i,j)
new ← k

H← edge_spread(P,Bnew, N)
Cnew ← count_harmful_objects(H, λ)
if Cnew < Cold then

B← MIHAO(P, N , λ, Bnew, ms)
else

B← Bold

ncands ← ncands − 1
M

(k)
i,j ← 0

else
Bout ← Bold

return Bout

of harmful objects of length λ per node in H. This function
uses the counting algorithm proposed in [20]. The metric we
finally consider to determine whether the candidate is “good”
or “bad” is the average number of harmful objects per node,
as defined in (7). Note that the algorithm does not guarantee
that the optimal solution, which is obviously unknown, will
be the output but, as will be shown in Section V, it provides
better solutions than the best ones available in the literature.

V. NUMERICAL RESULTS AND PERFORMANCE

We validate the procedure using array codes [21] and
Tanner codes [22] as a benchmark, and we verify the expected
performance improvement via Monte Carlo simulations.

A. Numerical results

It is known that the performance of (3, n)-regular array
codes, which are characterized by n = N = p, where p > 3
is some prime number, is adversely affected by (3, 3) ASs
and (4, 2) FASs. It can be easily shown that (3, 3) ASs and
(4, 2) FASs derive from a cycle of length 6 and a cluster of
two cycles of length 6, respectively [11]. We have applied



TABLE I
AVERAGE NUMBER OF (3, 3) ASS PER NODE E(3,3) IN AB SC-LDPC

CODES WITH m = 3, ms = 1

p 7 11 13 17 19 23
E(3,3) 0.43 1 1.08 1.88 2.26 3.26

E(3,3) [11], [16] 0.43 1 1.23 1.88 2.68 3.78

Algorithm 1 to minimize their multiplicity in AB QC-SC
codes when ms = 1. The results are shown in Table I.

We have also considered the (3, 5)-regular Tanner QC-
LDPC code with L = 155, g = 8, code rate R = 2

5 and

P̂ =

 1 2 4 8 16
5 10 20 9 18
25 19 7 14 28

 . (8)

The dominant trapping sets of this code are known to be (8, 2)
ASs [23]. They consist of clusters of cycles of length 8, 10, 12,
14, and 16. The easiest approach to eliminate these sets is to
target the shortest cycles for removal. By applying Algorithm
1 with the following inputs: P̂, N = 31, λ = 8, the all-zero
spreading matrix B, and ms = 1, we obtain

b1 =
[
2 2 1 1 4

]
, (9)

which results in a QC-SC parity-check matrix with no cycles
of length up to 8. We have E12 =

[
0 0 0 3.8 18.4

]
.

One can also minimize the multiplicity of cycles of length 10
and 12, by applying Algorithm 1 with different values of λ.
For example, the code with g = 10 we obtained, such that the
multiplicity of cycles of length up to 12 is minimized, is

b2 =
[
2 1 6 1 5

]
, (10)

where E12 =
[
0 0 0 1.8 15

]
. Further improvement can

be obtained by applying Algorithm 1 to eliminate all the
block-cycles of length 10. This requires an increase in the
memory to ms = 3 and spreading vector

b3 =
[
35 12 50 50 15

]
, (11)

which yields E12 =
[
0 0 0 0 9.4

]
. Note that an ex-

haustive search for such a code demands a huge computational
effort, since it would require to perform 69, 343, 957 attempts.
Suppose we wish to reduce the multiplicity of cycles of

length 12, which are known to combine into codewords of
minimum weight 24. From the exponent matrix (8), Algorithm
1 with ms = 1 outputs the spreading vector

b4 =
[
6 1 3 2 4

]
. (12)

In this case we have E12 =
[
0 0 0.6 3.2 14.2

]
.

As a final example, we consider the (3, 7)-regular Tanner
code with blocklength L = 301, g = 8, code rate R = 4

7 and

P̃ =

 1 4 16 21 41 35 11
6 24 10 40 31 38 23
36 15 17 25 14 13 9

 , (13)

from which two QC-SC codes have been obtained with
spreading vectors

TABLE II
AVERAGE SPEED UP OF ALGORITHM 1 WITH RESPECT TO RANDOM

SEARCH

Code B1 B2 B3 B4 B6

tran
talg

3.73 4.2 8.21 3.51 4.18

b5 =
[
3 4 2 4 1 6 6

]
, (14)

b6 =
[
5 3 1 4 6 2 4

]
. (15)

Vector b5 was randomly generated with ms = 1, whereas b6

is the output of Algorithm 1 with inputs P̃, N = 43, λ = 12,
the all-zero spreading matrix B, and ms = 1. The respective
block-cycle distributions of these two codes are

E12 =
[
0 0 1.86 17.57 71.14

]
,

E12 =
[
0 0 1.29 15.14 64

]
.

We have compared the time taken by Algorithm 1 to return
all these spreading matrices with the average time required to
find spreading matrices with the same (or better) cycle spectra
through random searches. The average speed up obtained is
shown in Table II, where tran and talg are the times required
by the random search and by Algorithm 1, respectively.

B. Error rate performance simulations

In this section we assess the performance of the newly
designed codes described in Section V-A in terms of bit
error rate (BER) via Monte Carlo simulations of binary phase
shift keying (BPSK) modulated transmissions over the AWGN
channel. We use a sliding window (SW) decoder with window
size W = 5(ms + 1) performing 100 iterations.

First, we consider the (3, 13)-regular array code and
through simulations we assess the AB QC-SC code obtained
by edge-spreading its exponent matrix P with the spreading
matrix found by Algorithm 1 (the average number of (3, 3)
ASs per node is given in Table I) and with a random spreading
matrix. The results shown in Fig. 1 confirm that (3, 3) ASs
have a significant impact on these codes and enforce the need
of an effective design to reduce their multiplicity.

We also consider the (3, 5)-regular Tanner code and assess
the QC-SC codes obtained by edge-spreading (8) with b1 and
b2. The results, shown in Fig. 2, confirm the effectiveness of
Algorithm 1. If we analyze the decoding failure patterns of
these codes we notice that, according to the analysis proposed
in [24], many of them are caused by cycles of length 12.
Moreover, for all cases of undetected error, the corresponding
codewords can be decomposed into cycles of length 12. For
this reason, we also assess the QC-SC code represented by
b4. It can be noticed that, even though G(H[0,∞]) for (12)
contains some block-cycles of length 8 and 10, there is an
improvement due to the reduction of the multiplicity of block-
cycles of length 12. The same approach has been followed
for the QC-SC codes represented by b5 and b6 that are
constructed from the (3, 7)-regular Tanner code. According



2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

E
b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R
Array R=10/13 opt. m

s
=1

Array R=10/13 ran. m
s
=1

Fig. 1. Simulated performance of AB QC-SC codes as a function of the
signal-to-noise ratio.

0 0.5 1 1.5 2 2.5 3

E
b
/N

0
 (dB)

10-8

10-6

10-4

10-2

100

B
E

R

Tanner R=2/5 b
1

Tanner R=2/5 b
2

Tanner R=2/5 b
4

Tanner R=4/7 b
5
 ran.

Tanner R=4/7 b
6
 opt.

Fig. 2. Simulated performance of Tanner-based QC-SC codes as a function
of the signal-to-noise ratio.

to their block-cycle spectra, the multiplicity of block-cycles
of length 12 is minimized for (15). This is seen to have a
positive impact on the BER performance in Fig. 2.

VI. CONCLUSION

We have proposed an efficient algorithm that enables the
design of good QC-SC codes based on QC-LDPC block
codes from the perspective of harmful objects. The algorithm
is flexible and allows the analysis of codes with different
structures and values of memory and rate. According to the
proposed approach, many classes of harmful objects can be
the target of a search-and-remove process aimed at optimizing
codes in terms of their error rate performance.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] A. Jiménez Felström and K. S. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,” IEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[3] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[4] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–
834, Jan. 2011.

[5] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–
1579, Jun. 2002.

[6] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conf., Monticello, IL, Oct. 2003, pp. 1426–1435.

[7] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201,
Jan. 2010.

[8] Y. Hashemi and A. Banihashemi, “On characterization of elementary
trapping sets of variable-regular LDPC codes,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5188–5203, Sep. 2014.

[9] ——, “New characterization and efficient exhaustive search algorithm
for leafless elementary trapping sets of variable-regular LDPC codes,”
IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6713–6736, Dec. 2016.

[10] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially
coupled LDPC codes constructed from protographs,” IEEE Trans. Inf.
Theory, vol. 61, no. 9, pp. 4866–4889, Sep. 2015.

[11] D. G. M. Mitchell, L. Dolecek, and D. J. Costello, Jr., “Absorbing set
characterization of array-based spatially coupled LDPC codes,” in Proc.
IEEE ISIT 2014, Honolulu, HI, USA, Jun. 2014, pp. 886–890.

[12] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and
L. Dolecek, “Optimized design of finite-length separable circulant-based
spatially-coupled codes: An absorbing set-based analysis,” IEEE Trans.
Commun., vol. 64, no. 3, pp. 918–931, Oct. 2016.

[13] D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high
rate array-based SC-LDPC codes,” in Proc. IEEE ISIT 2017, Aachen,
Germany, Jun. 2017, pp. 2940–2944.

[14] A. Beemer and C. A. Kelley, “Avoiding trapping sets in SC-LDPC codes
under windowed decoding,” in Proc. ISITA 2016, Monterey, CA, Oct.
2016, pp. 206–210.

[15] A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized
algebraic approach to optimizing SC-LDPC codes,” in Proc. 55th
Annual Allerton Conf., Monticello, IL, Sep. 2017, pp. 672–679.

[16] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinatorial
framework to construct spatially-coupled codes: Minimum overlap
partitioning,” in Proc. IEEE ISIT 2017, Aachen, Germany, Jun. 2017,
pp. 1693–1697.

[17] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length con-
struction of high performance spatially-coupled codes via optimized
partitioning and lifting,” IEEE Trans. Commun., vol. 67, no. 1, pp. 3–
16, Jan. 2019.

[18] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788–1793, Aug. 2004.

[19] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi,
“Design and analysis of time-invariant SC-LDPC convolutional codes
with small constraint length,” IEEE Trans. Commun., vol. 66, no. 3, pp.
918–931, Mar. 2018.

[20] H. Zhou and N. Goertz, “Cycle analysis of time-invariant LDPC
convolutional codes,” in Proc. IEEE ICT 2010, Doha, Qatar, Apr. 2010,
pp. 23–28.

[21] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc.
2nd Int. Symp. Turbo Codes, Brest, France, Sep. 2000, pp. 543–546.

[22] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[23] S. Zhang and C. Schlegel, “Causes and dynamics of LDPC error floors
on AWGN channels,” in Proc. 49th Annual Allerton Conf., Monticello,
IL, Sep. 2011, pp. 1025–1032.

[24] M. Battaglioni, M. Baldi, and G. Cancellieri, “Connections between
low-weight codewords and cycles in spatially coupled LDPC convolu-
tional codes,” IEEE Trans. Commun., vol. 66, no. 8, pp. 3268–3280,
Aug. 2018.


